
A QUALITATIVE SIMULATION FRAMEWORK IN

SMALLTALK BASED ON FUZZY ARITHMETIC

Richard L. Olson, USDA-Agricultural Research Service, PO Box 5367, Mississippi State,
MS 39762, USA

Daniel L. Schmoldt, USDA-Forest Service, Madison, Wisconsin, USA
David L. Peterson, Department of Forest Science, University of Washington, Seattle,

Washington, USA

SUMMARY

For many systems, it is not practical to collect and correlate empirical data necessary
to formulate a mathematical model. However, it is often sufficient to predict qualitative
dynamics effects (as opposed to system quantities), especially for research purposes.

In this effort, an object-oriented application framework (AF) was developed for the
qualitative modeling of natural-resources systems. An application framework is a
collection of reusable object classes that provide basic functionalist y for a class of
applications. The user creates subclasses that inherit this functionalist y, and that are
specific to his or her application. Smalltalk, an object-oriented programming (OOP)
language, was chosen for the AF.

The modeling methodology is based on Schmoldt (1991). Parameters represent
variables of interest in the model system. The magnitude of a parameter is represented by
its quantity, a fuzzy number, and the effects of changes in parameters upon one another
are simulated over time by fuzzy arithmetic. The values of the changes in parameters
and their quantities are then translated into linguistic values.

The AF includes classes providing all the functionality for constructing application-
specific fuzzy simulation, including FuzzyNumber, Parameter, FuzzySimulation and
FuzzyTimer. Also included are data-structures such as KeyValueList and
AssociationList, and modifications to Smalltalk to smoothly integrate fuzzy arithmetic
for non-fuzzy values. The framework runs under Microsoft Windows 3.1, and includes
a graphical user interface. In this paper, we present the AF along with an example
simulation of plant physiology.

KEYWORDS: qualitative simulation fuzzy

INTRODUCTION

Mathematical modeling has been a staple technique in the study of natural resources
for some time. Such models can be broadly categorized as empirical or mechanistic

189

(Olson et al., 1985). In empirical modeling, a mathematical equation is fit to a data set (or
sets) in order to describe a phenomenon of interest. Such models are data-intensive,
because they have little validity beyond the data-set from which they were derived.
Therefore, to be applicable to new situations, they must be re-parameterized with a
completely new data-set (Dale et al., 1985) -- they are often described as being “brittle”
(Holland, 1986).

Mechanistic models are those that are formulated based on biological relationships,
usually at one level below that of the phenomenon of interest. Like empirical models,
they are data-intensive, because their parameter-sets must be derived from experimental
data. Because they are based on biological mechanism, however, they are nominally less
brittle (i.e., more robust) than empirical formulations. Isebrands et al. (1990) reviews
mechanistic tree growth models.

Although the methodologies differ, the level of data necessary for the use and
construction of both empirical and mechanistic mathematical models is high. Many
times, especially in the case of long-lived species such as forest trees. the data is simply
not available. If information for a species is available, it is often only for a particular
growth stage (i.e., immature). Any mathematical model of the entire life history must
therefore be extrapolated from incomplete information. Finally, in complex simulation
models small errors in parameter estimation can be magnified into major qualitative and
quantitative errors at the level of interest.

The techniques used in any modeling effort should be appropriate to the desired
end-uses of the model. If predictions of system quantities are desired, as in fire or
growth-and-yield modeling, mathematical formulations are unavoidable. However, often
a qualitative description of the changes in system quantities is all that is necessary. In
these cases, the patterns of the system responses are of interest more than the exact
values of those responses, and a qualitative model is more suitable than a quantitative
formulation.

Schmoldt (1991) describes such a qualitative modeling technique based on fuzzy
logic. In this paper, we review that technique, and then describe an object-oriented
implementation of it in the Smalltalk programming language.

THE QUALITATIVE SIMULATION TECHNIQUE

Models using the Schmoldt (199 1) technique are called “influence
they can be represented as a diagram of the influences between model

models” because
parameters.

Figure 1 shows a fragment of the tree-physiology model from Schmoldt (1991). Arrows
represent the influences of each parameter in the model, which are represented by
boxes. Thus, the parameters stomatal-aperture, chlorophyll-deficiency, total-needle
biomass, and translocation all influence the photosynthesis, which, in turn, influences
carbohydrate-accumulation. The latter parameter influences both assimilation and
respiration.

Each parameter in the model can be represented by a current value, or “quantity”,
and a current rate of “change”. In a qualitative model, these take on linguistic
attributes, such as “low” or “high” for quantity and “slightly increasing” or

190

“moderately-decreasing” for change. In the model, each parameter has a minimal set of
information stored with it (Figure 2): it’s present quantity, rate of change, and a list of
it’s dependencies (i.e., the other parameters in the model that affect it), accompanied by
the direction of influence (+ or -).

Within the model, the linguistic values for “quantity” and “change” are represented
as fuzzy numbers. These numbers, and the fuzzy calculus used to manipulate them, are
derived from Zadeh’s theories of possibility and fuzzy sets (Zadeh, 1965). Although we
won’t go into fuzzy-set theory in any detail [see Schmoldt (1991) for a description of
ideas relevant to the model], we will discuss the concepts necessary to understand the
modeling framework described in this paper.

Fuzzy Sets

In a fuzzy set, measurements in some domain are mapped to a set of linguistic
variables, such as “large” or “small”. For each fuzzy subset, a membership function, µ,
assigns a probability y that each measurement belongs to it. For example, µlarge contains
the probabilities that each measurement in the domain belongs to the fuzzy subset
“large.” In an example from Schmoldt (1991), Table 1 contains two membership
functions, µlarge and µsmall for tree diameter measurements. From this table, it can be seen
that the probability of a tree measuring 10 cm in diameter being in the subset “large” is
only 0.2, whereas the probability that it is in the subset “small” is 0.8.

diameter µ l a r g e µ s m a l l

5 cm 0.0 1.0
10 cm 0.2 0.8
15 cm 0.4 0.5

25 cm 0.7 0.1
35 cm 0.9 0.0

45 cm 1.0 0.0

Table 1. Two membership functions (µlarge and
µsmall) relating to diameter classes. After
Schmoldt (1991). See text for details.

The fuzzy numbers “large” and “small” may be defined, with regards to diameter,
from Table 1 as {0.0/5, 0.2/10, 0.4/15, 0.7/25, 0.9/35, 1.0/45} and {1.0/5, 0.8/10, 0.5/15,
O. 1/25, 0.0/35, 0.0/45}, respectively. Note, that to be comparable, the numbers must have
the same basis, in this case the set {5, 10, 15, 25,35, 45}. More generally, we can write
any fuzzy number F as:

(1)

191

where f(n) is a membership value at basis value n within the basis bounded by i and j.
Table 2 lists the linguistic variables for the attributes “quantity” and “change”. The

bases for these sets and- their membership functions are beyond the scope of this article;
they are defined in Schmoldt (1991).

Set Value

Quantity Zero Low Moderate

Moderately- High Very-high
high

Change Strongly- Decreasing Moderately-
decreasing decreasing

Slightly-decreasing Steady Slightly-increasing

Moderately- Increasing Strongly-increasing
increasing

Table 2. The linguistic values for “change” and “quantity”. See text for details.

In the simulation, when a parameter changes, it is propagated through the influence
network via fuzzy calculus. Again, the description of this calculus is beyond the scope
of this paper, but ‘is defined fully in Schmoldt (1991).

.

We next describe the object-oriented modeling framework that implements the model
described above.

FUZZY-AF

The fuzzy simulation application framework (Fuzzy-AF) is an object-oriented
modeling system that implements the qualitative simulation method of Schmoldt (1991).
Object-oriented programming (OOP) is a powerful design paradigm that facilitates code
reuse and modularity. We will not go into the details of OOP in this paper; for a good
introduction to the topic as it applies to natural resources management programs, see
Olson and Wagner (1992).

The application framework (AF) concept takes full advantage of the reusable and
modular nature of OOP code. An AF is a collection of abstract superclasses (i.e.,
classes that will not be instantiated) implementing the basic functionality of a kind of
application. An AF is used by creating subclasses that are specific to a user’s
application. Application frameworks are common in today’s object-oriented
programming systems; a well-known example is the Microsoft Foundation Classes
(Microsoft Corp., Redmond, Washington, USA), a collection of C++ classes for the
implementation of graphical user interfaces on personal computers. For more on the AF

192

concept, and another example of it’s use in biological simulation, see Olson et al. (1996).
Fuzzy-AF is implemented in Smalltalk, a pure object-oriented programming language

(Goldberg and Robson, 1989) in the Visual Smalltalk dialect (ParcPlace-Digitalk Corp.,
Sunnyvale, California, USA). The framework runs on IBM-compatible computers of
80486 class or better.

The framework consists of four major classes, those that implement the modeling
paradigm and the fuzzy mechanics, and five support classes. The latter implement
special data-structures and simulation book-keeping. The major classes are: Parameter,
FuzzyNumber, FuzzySimulation, and FuzzyTimer. The support classes include
Simulation, SimulationObject, AssociationList, IDAssociationList, and
KeyValueList. In addition, there are also overridden methods for the Smalltalk classes
Float and Integer that handle mixed arithmetic for fuzzy numbers. Table 3 lists the
classes in Fuzzy-AF.

Major AF Classes I Support Classes

Parameter SimulationObject

FuzzyNumber Simulation

Fuzzy Simulation AssociationList

FuzzyTimer IDAssociationList

KeyValueList

Table 3. A list of major and support application framework
Classes. See text for details.

Figure 3 shows the inheritance hierarchy for the major classes of Fuzzy-AF.
Inheritance is a powerful feature of object-oriented programming -- it is what makes the
application framework concept possible. Classes lower in the hierarchy inherit
functions (methods) and data-structures (but not data values) from those higher. The
arrows show the direction of inheritance; thus, Class FuzzySimulation inherits from
Class Simulation, and so on. To illustrate the implementation of fuzzy simulation in
Fuzzy-AF, we next describe selected classes in more detail, examining selected data
structures and functions of each.

Class Parameter

Figure 4 shows a partial definition of Class Parameter. Data structures include
quantity and change, fuzzy numbers representing the quantity and change values,
respectively; quantityLinguistic and changeLinguistic, the linguistic equivalents of
quantity and change values (eg., “low” and “moderately-increasing”); influences and
dependencies: lists of pointers to instantiated parameters that the object influences and

193

that influence the parameter, respectively; influenceClasses and dependencyClasses,
lists of the types of influences and dependencies, respectively; and the timeScale on
which the parameter operates.

Functions of Class Parameter include update, which updates the parameter if
needed; updateQuantity and updateChange, which update the fuzzy numbers
representing quantity and change, respective y; and translate:with, which translates
fuzzy numbers into their linguistic equivalents.

Class FuzzyNumber

Figure 5 contains a partial definition of the class FuzzyNumber. There is only one
data structure, value, a list of basis numbers and their associated values for the particular
fuzzy number represented by the instance of the class.

There are six arithmetic functions supported by class FuzzyNumber: +, -, *, /, >,
and exp. Each arithmetic function overrides the built-in Smalltalk binary function it
replaces; for example, the function “+” first tests to see whether its argument is another
fuzzy number. If so, it uses the addition rule for two fuzzy numbers outlined in
Schmoldt (1991); if not, it uses the mixed number rule in that paper. This illustrates a
major advantage of the object-oriented paradigm: functions that have identical names,
but different implementations, can be defined for multiple classes of object. This feature,
called polymorphism, enables the user to use the same function-names to access similar
features in different object-classes without regard to how the are implemented.

The other functions in Fig. 5 are for the manipulation and modification of fuzzy
numbers: makeConvex renders the number as a convex set; interpolateBetween:and:
finds the membership values on a straight line between two base/value pairs in the fuzzy
number; and distance To: finds the Euclidian distance between itself and another fuzzy
number. All of these functions are necessary in the arithmetic manipulation of fuzzy
numbers, and, the propagation of changes through the model influence net.

Class Fuzzy Simulation

Class FuzzySimulation (Fig. 6) stores all the information necessary for the running of
a qualitative fuzzy simulation. Data structures include partClasses and parts (inherited
from its superclass Simulation), which are a lists of the parameter classes in the model and
references to instances of those classes, respectively; changeDefinitions and
quantityDefinitions, the linguistic definitions for change and quantity values,
respectively; changeBasis and quantityBasis, the bases for change and quantity
values, respectively; and timer, a pointer to an instance of Class Fuzzy Timer. Instances
of the latter class keep track of system time.

Functions of Class FuzzySimulation include constructNet, which builds the
network using partClasses , the functions constructDependencies and
constructInfluences, and the lists of dependency and influence classes found in each
parameter; and initialize, which initializes the entire simulation.

We next examine some user issues, and take a brief look at how the simulation is
accomplished.

194

USING FUZZY-AF

To develop a simulation the user first creates subclasses of Class Parameter that are
specific to her/his application. Figure 7 shows the Fuzzy-AF inheritance structure, with
subclasses specific for the tree physiology model (Schmoldt, 1991) emphasized. The
classes thus created must have information relevant to the network diagram stored in the
data-structures influenceClasses and dependency Classes. Thus, they “know” at run-
time what their related parameters are.

The user must also create an application-specific subclass of Class FuzzySimulation.
This class contains simulation-specific information about the bases of the fuzzy numbers
used in the simulation, and the linguistic definitions for change and quantity.

To run the simulation, a new instance of the FuzzySimulation subclass is created
using a Smalltalk message of the form

a := Fuzzy SimulationSubclass new, (2)

which creates a new instance of FuzzySimulationSublcass and assigns it to the
variable “a”. Upon its creation, the instance of FuzzySimulationSublcass does the
following: -

1.
2.
3.
4.

sets the change, quantity bases
sets the change, quantity definitions
constructs its parts list (i.e, initializes all parameters)
constructs the influence network.

To run the simulation for n time units, a Smalltalk command of the following form is
issued:

a runFor: n (3)

For each time interval, the FuzzySimulationSublcass instance sends the message
update With: t(where t is the system time) to each parameter. Each parameter can be
updated at different time intervals, and so must decide whether or not to update itself. If
so, it does the following:

1.
2.
3.

updates the change values
updates quantity values
translates change and quantity fuzzy numbers into. . . .
linguistic values

CONCLUSIONS

Due to a lack of required data and numeric inconsistencies, numeric simulations of
biotic systems are often infeasible. When dynamic response and pattern prediction are
all that are necessary for the purpose of the model, a qualitative simulation is sometimes
sufficient. An Application Framework, Fuzzy-AF, for qualitative simulation using fuzzy

195

arithmetic was developed based on the methodology of Schmoldt (1991). The
framework is implemented in the Smalltalk programming language, and runs on 80486-
class (or better) IBM compatible microcomputers. The framework is usable by others via
the creation of user-specific subclasses of the application framework classes. Fuzzy-AF
shows promise as a general-purpose tool for qualitative simulation in natural resources
research and management.

LITERATURE CITED

Dale, V. H., Doyle, W.T. and Shugart, H. H., 1985: A comparison of tree growth models.
Ecol. Modelling, 29:145-169.

Goldberg, A. and Robson, D., 1989: Smalltalk-80: The Language. 585 pp., Addison-
Wesley, Reading, MA.

Holland, J. H., 1986: Escaping brittleness: The possibilities of general purpose learning
algorithms applied to parallel rule-based systems. pp. 593-623 in: Machine Learning:
An Artificial Intelligence Approach, Volume II, R.S. Michalski, J.G. Carbonell and
T.M. Mitchell (editors), Morgan Kaufmann, Los Altos, California, 738 pp.

Isebrands, J. G., Rauscher, H. M., Crow, T. R., and Dickson, D.J., 1990: Whole tree
growth process models based on structural-functional relationships. pp. 96-112 in:
Process Modeling of Forest Growth Responses to Environmental Stress, R.K. Dixon,
R.S. Meldahl, G.A. Ruark and W.G. Warren, editors, Timber Press, Portland, Oregon.

Olson, R.L. and Wagner, T. L.. 1992. WHIMS, a knowledge-based system for cotton
pest management. AI Applications ,6(1): 41-58.

Olson, R. L., Sharpe, P.J.H., and Wu, H., 1985: Whole-plant modeling: A continuous-
time Markov (CTM) approach. Ecol. Modelling 29:171-187.

Schmoldt, D. L., 1991. Simulation of plant physiological processes using fuzzy variables.
AI Applications, 6:3-16.

Zadeh, L. A., 1965: Fuzzy sets. Information and Control, vol. 8, pp. 338353.

196

Figure 1. A fragment of the tree physiology
details.

model from Schmoldt (1991). See text for

Photosynthesis

Quantity: Low

Change: Slightly-increasing

Dependencies: chlorophyll-
deficiency
s tomat
a p e r t u r e
total -needl
b iomass
translocation

Figure 2. The structure of a parameter, Photosynthesis, from the tree physiology
of Schmoldt (1991). See text for details.

model

197

Figure 3. The inheritance hierarchy of Fuzzy-AF. See text for details

Class: Parameter

Superclass: SimulationObject

Data Structures: quantity quantityLinguistic
change changeLinguistic

influences influenceClasses
dependencies dependencyClasses

timeScale

Functions: update translate: with:
updateQuantities updateChange

Figure 4. Definition of Class Parameter. See text for details.

198

Class: Fuzzy Number

Superclass: Object

Data Structure: value

Functions: +, -, *, /, >, exp
distanceTo:
interpolateBetween:and:
makeConvex

Figure 5. Definition of Class FuzzyNumber. See text for details.

Class: Fuzzy Simulation

Superclass: Simulation

Data Structures parts* timer

changeDefinitions quantityDefinitions

changeBasis quantityBasis

partClasses*

Functions: initialize constructNet

constructDependencies constructInfluences

Figure 6. Definition of Class Fuzzy Simulation. See text for details.

199

Figure 7.
Schmoldt

The inheritance hierarchy of Fuzzy-AF, with the subclasses for the tree simulation of
(1991) emphasized. See text for details.

200

Caring for the Forest:
Research in a Changing World

Statistics, Mathematics and Computers

Proceedings of the Meeting of IUFRO S4.11-00 held at
IUFRO XX World Congress, 6–12 August 1995, Tampere, Finland

Editors
Michael Kohl

George Z. Gertner

Published by
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL/FNP)

CH-8903 Birmensdorf, Switzerland

1996

